Department of Biochemistry and Molecular Biophysics

Website:

http://biochem.wustl.edu

Research Electives

Biochemistry and Molecular Biophysics Research Electives

During the fourth year, opportunities exist for many varieties of advanced clinical or research experiences.

Wayne M. Barnes, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-3351

Inventing a new way to sequence DNA; PCR at one temp; RT-enabled Taq pol

Greg Bowman, PhD

South Building, 2nd Floor Phone: 314-362-7433

The Bowman lab seeks to understand how protein dynamics gives rise to functional processes like allosteric communication between distant sites and to exploit our insight into this shape-shifting to design new drugs and proteins.

Peter M.J. Burgers, PhD

South Building, 1st Floor Phone: 314-362-3872

Molecular biology of DNA replication and damage response in yeast and humans

John Cooper, MD, PhD

South Building, 2nd Floor Phone: 314-362-0287

Molecular mechanisms of cell motility and cytoskeleton assembly

Carl Frieden, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-3344

Protein folding, aggregation, intrinsically disordered proteins, fluorescence methods, ApoE lipoproteins and Alzheimer's disease

Eric A. Galburt, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-5201

Biophysical studies of transcription initiation in eukaryotes and mycobacterial tuberculosis

Roberto Galletto, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-4368

Mechanistic studies of DNA motor proteins

Michael Greenberg, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-8670

Our lab is focused on cytoskeletal molecular motors in health and disease. We are currently studying the effects of mutations that cause $\,$

heart disease.

Kathleen Hall, PhD

South Building, 2nd Floor Phone: 314-362-4196

We study RNA folding and RNA binding to proteins.

Alex Holehouse, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-273-8371

Understand how function is encoded into disordered sequences using a combination of computational and experimental approaches

Jim Janetka, PhD

Cancer Research Building, 2nd Floor

Phone: 314-362-0509

Rational structure-based drug design and synthesis for cancer and infectious disease

Andrzej Krezel, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-8482

Structural biology of transcriptional regulation in the gastric pathogen *Helicobacter pylori*

Weikai Li, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-8687

Structural and biochemical studies of membrane proteins supporting blood coagulation $\label{eq:coagulation} % \[\frac{1}{2} \left(\frac{1}{2$

Timothy M. Lohman, PhD

North Building, 2nd Floor Phone: 314-362-4393

Mechanisms of DNA-protein interactions; DNA motor proteins (helicases) and SSB proteins

Garland R. Marshall, PhD

Cancer Research Building, 2nd Floor

Phone: 314-935-7911

A major focus is molecular recognition: the basis of intermolecular interactions and specificity seen in drug and hormone receptors and in antigen-antibody and substrate-enzyme systems.

Linda Pike, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-362-9502

Our focus is on the mechanisms of action of growth factors and polyphosphoinositide metabolism.

Janice Robertson, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-273-7758

Our goal is to understand how and why membrane proteins fold, form stable complexes, and achieve conformational stability inside of the oil-filled cell membrane.

Andrea Soranno, PhD

South Building, 2nd Floor Phone: 314-273-1632

Our main research interests are the physical principles and molecular mechanisms that determine biomolecular function.

Rui Zhang, PhD

McDonnell Sciences Building, 2nd Floor

Phone: 314-273-1663

We combine single-molecule fluorescence spectroscopy and concepts from polymer physics to investigate intrinsically disordered proteins. We also develop innovative methods to study macromolecular conformations and dynamics within cells and in membraneless organelles.